返回 第三百零六章 高斯的宝藏(下)(8.4K)  走进不科学 首页

上一章 目录 下一页

『章节错误,点此举报』

天才一秒记住本站地址:[壁落小说]https://wap.biquluo.info/最快更新!无广告!

    第三百零六章 高斯的宝藏(下)(8.4K) (第1/3页)

    “......”

    书房内。

    看着高斯递到面前的这份全新手稿,徐云的脸上不由冒出了一股好奇。

    这里头的内容会是什么?

    要知道。

    在数学领域里,亲和数属于数论的一个分支。

    和它能搭上边的‘亲戚’如果真要一个数,符合条件的例子实在是太多太多了。

    比如素数、等和数,孤立数,公和数等等一大堆都是......

    甚至你硬要扯的话。

    非欧几何都能和数论扯上关系:

    因为非欧几何也是一个一阶谓词逻辑与初等数论的形式系统,符合哥德尔不完备定理。

    因此单靠高斯的介绍,徐云确实猜不出这份手稿的内容,只能亲自观阅才知道了。

    随后他伸出双手,小心的接过手稿。

    接着他又想到了什么,停下动作,对高斯问道:

    “高斯教授,这份手稿是您给我的,看完算.....”

    结果徐云话未说完,高斯便无情的打消了他的念头:

    “当然要记入五卷之一。”

    徐云只能耸耸肩。

    好吧,卡逻辑bug失败。

    不过总体上问题不大,毕竟这五卷手稿的机会本身便是个意外之喜。

    随后他又打量了一番手稿外部,发现手稿只被一根红丝带绑着,没有看到类似亲和数那种写有大致内容的封条。

    见此情形。

    徐云顿时目光一凝,心中的重视度又提高了几分:

    不通过标题索引就能找出来的手稿,说明它在高斯心中的地位一定不一般,至少不需要靠着封条来进行记忆提示。

    想到这里。

    徐云解丝带的动作不由快了几分,看上去就像是在解...解鞋带一样。

    嗯,解鞋带,不要多想。

    小半分钟后。

    一卷摊平的稿纸出现了在了徐云面前。

    徐云捏着稿纸上半部的两角,像是催更党倒着拎作者似的将其拿起,目光逐行逐字的看了下去。

    几秒钟后。

    徐云的瞳孔骤然一缩,大惊之下,手中的手稿险些脱手落地!

    只见这份稿纸的开头处,赫然便写着一行字:

    《有关奇完全数不存在的证明》

    这个标题的正确读法是【有关/奇完全数/不存在/的证明】,其中最关键的核心就是中间的两个词:

    奇完全数、不存在。

    了解数论的同学应该都知道。

    这两个词若是同时出现在后世的2022年,注定将会在数学界中引发一场大地震。

    早先提及过。

    在徐云穿越来的2022年,亲和数在数学界中的地位一直都有些尴尬:

    一方面。

    亲和数可以通过计算机穷举列出,跟生产线似的比较约数和。

    符合条件的输出YES,反之便是NO,一键搞定。

    截止到2022年8月15日凌晨3点34分,已经发现的亲和数便超过了11994387对。

    其中最长的一对数长达2400多万位——请注意,不是2400万这个数字,而是2400万位,一个亿是九位数。

    如果实在不太好理解这个概念,可以把“位”看成一个字。

    2400万位数,也就是相当于2400万字的网络。

    如果笔者把这个数列出来,咱们这本书的字数立刻就可以窜到前几......

    其实这还不算是最离谱的,上一章提到的圆周率才最吓人——它已经被计算到100万亿位了。(感谢读者的指正,我查了一下62万亿记录确实被刷新了,才八个月不到,太快了)

    创下这个记录的是谷歌云工程师Emma Haruka Iwao,一位霓虹人。

    ta使用了25台谷歌虚拟机,前后花了158天,最后在今年6月份创下了这个记录。

    这位也是19年计算出了31.4万亿位圆周率的项目领头人,不过比起ta的成就,这位的取向也相当微妙:

    从前面的ta就不难看出,这位大佬是个生理女性、心理男性的女同支持者......

    所以徐云有时候还挺纳闷的,这年头有本事的人都喜欢给自己加buff么?

    ok,话题再回归原处。

    计算机既然可以筛选出这么多位的亲和数,那么为啥还说它尴尬呢?

    原因很简单。

    那就是亲和数的具体规律依旧没有完全被破解,计算机靠的是穷举法而已。

    这种方法这导致了这些亲和数中,又出现了另一部分‘变异’并且未知的数字。

    比如说12496。

    你将它的约数加起来,会得到14288这个数。

    再将14288的约数加起来,会得到15472;

    然后持续这个过程。

    15472会变成14536.....

    14536会变成14264......

    14264则会变成.....

    12496。

    没错。

    五次变化之后,正好回到了。

    这种数就叫做交际数。

    由于它的朋友圈比亲和数...或者说相亲数更广一些,因此也有人叫它海王数。

    而除了交际数之外,还有一个数同样特殊到了极致。

    那就是完全数,也叫做完美数。

    这个数的概念其实很简单:

    当你把它们的约数相加,就会得到它们自身。

    最小的例子是6。

    6的约数是1、2和3,而1+2+3=6。

    之后是28,因为28=1+2+4+7+14。

    28的下一个完全数是496,再接下来就是一个比较大的跨越,到了8128。

    至于再往后嘛......

    就越来越荒唐了。

    比如8128的下一个完全数是33550336,接下来是8589869056,后脚紧跟着的是137438691328。

    再后面那个拖后腿的则是2305843008139952128,看上去跟报身份证似的......

    截止到徐云穿越的时候,完全数一共只有51个。

    目前已知的最大完全数是在2018年发现的,有49724095位数字,约数多达1115770321个。

    它相当于4900万字的,是上面最大亲和数的足足两倍,二者加起来,全网只有《宇宙巨校闪级生》的字数比它两多.....

    这其实是个非常令人头皮发麻的事儿:

    想想看吧。

    它的1115770321个约数,结果加起来竟然恰好等于自身......

    所以后世许多人之所以会认为数学中隐藏着宇宙的奥秘,并不是他们为了提高自身行业重视度说出的贴金言论,而是有些数字真的精妙到了极致。

    另外,数学这门学科也在哲学角度反映出了宇宙黑暗而又残酷的现实——你不会就是不会,写个解顶多就得一分,神仙都救不了你......

    咳咳......

    除了约数方面的特性之外,完全数还有两个特殊的地方:

    一个是目前发现的所有完全数都和梅森素数一一对应,无一例外。

    也就是找到了多少个梅森素数,便有多少个完全数。

    如今执行相关计算的是一个叫做GIMPS的项目组,14年的时间里一共找到了10个梅森素数...或者说完美数。

    

    (本章未完,请点击下一页继续阅读)
最新网址:wap.biquluo.info

『加入书签,方便阅读』

上一章 目录 下一页